Rethinking seizures associated with cardiac disease

Rethinking seizures associated with cardiac disease

Research from Washington University in St. Louis finds that mutations of a gene implicated in long QT syndrome in humans may trigger seizures because of their direct effects on certain classes of neurons in the brain — independent from what the genetic mutations do to heart function. The new work from Arts & Sciences was conducted with fruit flies and is published August 8 in PLOS Genetics.
Scientists get closer look at living nerve synapses

Scientists get closer look at living nerve synapses

The brain hosts an extraordinarily complex network of interconnected nerve cells that are constantly exchanging electrical and chemical signals at speeds difficult to comprehend. Now, scientists at Washington University School of Medicine in St. Louis report they have been able to achieve — with a custom-built microscope — the closest view yet of living nerve synapses.

Heart drug may help treat ALS, mouse study shows

Digoxin, a medication that has been used to treat heart failure, may be adaptable for the treatment of amyotrophic lateral sclerosis (ALS), a progressive, paralyzing disease, suggests new research at the School of Medicine.

Human skin cells reprogrammed directly into brain cells

School of Medicine scientists have described a way to convert human skin cells directly into a specific type of brain cell affected by Huntington’s disease, an ultimately fatal neurodegenerative disorder. Unlike other techniques that turn one cell type into another, this new process does not pass through a stem cell phase, avoiding the production of multiple cell types.

Chemist receives funding to unravel tricks of neuronal wiring

Joshua Maurer, Ph.D., assistant professor of chemistry in Arts & Sciences at Washington University in St. Louis, has received a four-year, $1,216,000 grant from the National Institute of Mental Health for research titled, “Unraveling Development: New Materials for Understanding Neuronal Wiring.” Maurer’s long term objective is to develop methodology that allows the study of a variety of neuronal wiring processes. He is starting by unscrambling a phenomenon known as midline crossing using zebrafish. During development, neurons from the right eye cross the midline of the brain to make a connection in the left hemisphere.
Older Stories