Genome of bacterium that makes rare form of chlorophyll sequenced

Researchers at WUSTL and Arizona State University have sequenced the genome of a rare bacterium that harvests light energy by making an even rarer form of chlorophyll, chlorophyll d. Chlorophyll d absorbs “red edge,” near infrared, long wave length light that is invisible to the naked eye. In so doing, the cyanobacterium Acaryochloris marina competes with virtually no other plant or bacterium in the world for sunlight.

Genome of bacterium that makes rare form of chlorophyll sequenced

Researchers at Washington University in St. Louis and Arizona State University have sequenced the genome of a rare bacterium that harvests light energy by making an even rarer form of chlorophyll, chlorophyll d. Chlorophyll d absorbs “red edge,” near infrared, long wave length light that is invisible to the naked eye. In so doing, the cyanobacterium Acaryochloris marina, competes with virtually no other plant or bacterium in the world for sunlight.

Bacterium sequenced makes rare form of chlorophyll

David Kilper/WUSTL PhotoRobert Blankenship, professor of biology and chemistry at Washington University in St. Louis, holds the cyanobacteria *Acaryochloris marina*, a rare bacterium that uses chlorophyll d for photosynthesis.Researchers at Washington University in St. Louis and Arizona State University have sequenced the genome of a rare bacterium that harvests light energy by making an even rarer form of chlorophyll, chlorophyll d. Chlorophyll d absorbs “red edge,” near infrared, long wave length light that is invisible to the naked eye. In so doing, the cyanobacterium Acaryochloris marina, competes with virtually no other plant or bacterium in the world for sunlight.