Genome of bacterium that makes rare form of chlorophyll sequenced

Researchers at WUSTL and Arizona State University have sequenced the genome of a rare bacterium that harvests light energy by making an even rarer form of chlorophyll, chlorophyll d. Chlorophyll d absorbs “red edge,” near infrared, long wave length light that is invisible to the naked eye. In so doing, the cyanobacterium Acaryochloris marina competes with virtually no other plant or bacterium in the world for sunlight.

Genome of bacterium that makes rare form of chlorophyll sequenced

Researchers at Washington University in St. Louis and Arizona State University have sequenced the genome of a rare bacterium that harvests light energy by making an even rarer form of chlorophyll, chlorophyll d. Chlorophyll d absorbs “red edge,” near infrared, long wave length light that is invisible to the naked eye. In so doing, the cyanobacterium Acaryochloris marina, competes with virtually no other plant or bacterium in the world for sunlight.

Bacterium sequenced makes rare form of chlorophyll

David Kilper/WUSTL PhotoRobert Blankenship, professor of biology and chemistry at Washington University in St. Louis, holds the cyanobacteria *Acaryochloris marina*, a rare bacterium that uses chlorophyll d for photosynthesis.Researchers at Washington University in St. Louis and Arizona State University have sequenced the genome of a rare bacterium that harvests light energy by making an even rarer form of chlorophyll, chlorophyll d. Chlorophyll d absorbs “red edge,” near infrared, long wave length light that is invisible to the naked eye. In so doing, the cyanobacterium Acaryochloris marina, competes with virtually no other plant or bacterium in the world for sunlight.

Department of Energy Funds cyanobacteria sequencing project

Photo by David Kilper / WUSTL PhotoHimadri Pakrasi explains the photobioreactor in his Rebstock Hall laboratory.The United States Department of Energy (DOE) has devoted $1.6 million to sequencing the DNA of six photosynthetic bacteria that Washington University in St. Louis biologists will examine for their potential as one of the nextgreat sources of biofuel that can run our cars and warm our houses. That’s a lot of power potential from microscopic cyanobacteria (blue-green algae) that capture sunlight and then do a variety of biochemical processes. One potential process, the clean production of ethanol, is a high priority for DOE. Himadri Pakrasi, Ph.D., Washington University Professor of Biology in Arts & Sciences, and Professor of Energy in the School of Engineering and Applied Science, will head a team of biologists at Washington University and elsewhere in the analysis of the genomes of six related strains of Cyanothece bacteria. More…

Systems Analysis of Cyanobacterial Physiology in Membrane Biology

In just six months of collaboration, a Department of Energy grand challenge led by Washington University in St. Louis has resulted in the sequencing and annotation of a cyanobacterium that could yield clues to how environmental conditions influence key carbon fixation processes at the gene-mRNA-protein levels in an organism.

Family trees of ancient bacteria reveal evolutionary moves

Carrine Blank/WUSTL PhotoA WUSTL scientist suggests that Cyanobacteria arose in freshwater environments rather than in the sea.A geomicrobiologist at Washington University in St. Louis has proposed that evolution is the primary driving force in the early Earth’s development rather than physical processes, such as plate tectonics. Carrine Blank, Ph.D., Washington University assistant professor of geomicrobiology in the Department of Earth & Planetary Sciences in Arts & Sciences, studying Cyanobacteria – bacteria that use light, water, and carbon dioxide to produce oxygen and biomass – has concluded that these species got their start on Earth in freshwater systems on continents and gradually evolved to exist in brackish water environments, then higher salt ones, marine and hyper saline (salt crust) environments.