Profile image of Matthew Lew, McKelvey School of Engineering

Matthew Lew

Associate Professor, Preston M. Green Department of Electrical & Systems Engineering

Contact Information
Media Contact

Lew and his students build advanced imaging systems to study biological and chemical systems at the nanoscale, leveraging innovations in applied optics, signal and image processing, design optimization, and physical chemistry.

Their advanced nanoscopes (microscopes with nanometer resolution) visualize the activity of individual molecular machines inside and outside living cells. Examples of new technologies developed in the Lew Lab include 1) using tiny fluorescent molecules as sensors that can detect amyloid proteins, 2) designing new “lenses” to create imaging systems that can visualize how molecules move and tumble, and 3) new imaging software that minimizes artifacts in super-resolution images.


New, fundamental limit to ‘seeing and believing’ in imaging

New, fundamental limit to ‘seeing and believing’ in imaging

As researchers probe smaller parts of our world, a “picture” is not always showing what it may seem to show. One researcher at the McKelvey School of Engineering at Washington University in St. Louis has uncovered a fundamental limit to our ability to trust what we see when it comes to images of molecular motion.
‘Blink’ and you won’t miss amyloids

‘Blink’ and you won’t miss amyloids

Tiny protein structures called amyloids are key to understanding certain devastating age-related diseases, but they are so minuscule they can’t be seen using conventional microscopic methods. A team of engineers at Washington University in St. Louis has developed a new technique that uses temporary fluorescence, causing the amyloids to flash or “blink”, allowing researchers to better spot these problematic proteins.