Singamaneni’s research interests include Plasmonic engineering in nanomedicine (in vitro biosensing for point-of-care diagnostics, molecular bioimaging, nanotherapeutics), photovoltaics (plasmonically enhahced photovoltaic devices), surface enhanced Raman scattering (SERS) based chemical sensors with particular emphasis on the design and fabrication of unconventional and highly efficient SERS substrates, hierarchical organic/inorganic nanohybrids as multifunctional materials, bioinspired structural and functional materials, polymer surfaces and interfaces, responsive and adaptive materials and scanning probe microscopy and surface force spectroscopy of soft and biological materials.
Young-Shin Jun, professor of energy, environmental and chemical engineering; and Srikanth Singamaneni, professor of mechanical engineering and materials science
The lab of Srikanth Singamaneni at the McKelvey School of Engineering at Washington University in St. Louis developed a biosensing microneedle patch that can be applied to the skin, capture a biomarker and, thanks to its unprecedented sensitivity, allow clinicians to detect the biomarker’s presence.
Research from the McKelvey School of Engineering at Washington University in St. Louis has determined that locusts can smell explosives and determine where the smells originated — an important step in engineering cyborg bomb-sniffing locusts.
Researchers at the McKelvey School of Engineering at Washington University in St. Louis received funding for a new COVID-19 test that is based on brand new technology that won’t require brand new tools, making it easy for clinicians to use.
Engineers from the McKelvey School of Engineering want to know if they can use nanotechnology to control neurons and parse the relationship between neural activity and behavior and disease.
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose. It’s highly efficient, long-lasting and environmentally friendly — and could provide clean water for those in need.